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Abstract—Keyword Spotting (KWS) has been traditionally
considered under two distinct frameworks: Query-by-Example
(QbE) and Query-by-String (QbS). In both cases the user of the
system wished to find occurrences of a particular keyword in a
collection of document images. The difference is that, in QbE, the
keyword is given as an exemplar image while, in QbS the keyword
is given as a text string. In several works, the QbS scenario
has been approached using QbE techniques; but the converse
has not been studied in depth yet, despite of the fact that QbS
systems typically achieve higher accuracy. In the present work,
we present a very effective probabilistic approach to QbE KWS,
based on highly accurate QbS KWS techniques which rely on
models which need to be trained from annotated data. To assess
the effectiveness of this approach, we tackle the segmentation-
free QbE task of the ICFHR-2014 Competition on Handwritten
KWS. Our approach achieves a mean average precision (mAP) as
high as 0.715, which improves by more than 70% the best mAP
achieved in this competition (0.419 under the same experimental
conditions).

I. INTRODUCTION

Perhaps billions of historical handwritten text documents
remain untranscribed and current handwritten text recognition
(HTR) technology is still far to offer sufficiently accurate
automatic transcripts. Therefore, sheer amounts of important
historical information remains practically inaccessible. Key
Word Spotting (KWS) is one of the approaches which are
being proposed to deal with this problem. KWS aims at
determining locations on a text image or image collection
which are likely to contain an instance of a queried word,
without explicitly transcribing the image(s).

KWS is generally qualified as Query-by-Example (QbE)
or Query-by-String (QbS), depending on whether the query
word is specified by means of an example-image or as just a
character string, respectively. Moreover, most of the techniques
which have been proposed for KWS can be considered to
belong to one of these two broad classes: training-based
and training-free. Training-based KWS methods are generally
based on statistical optical (and language) models and typically
adopt the QbS paradigm [1], [2], [3], [4], [5], [6], [7], [8], [9].
On the other hand, most training-free techniques are based
on direct template (image) matching and assume the QbE
framework; see [10], [11], [12], [13], [14], [15], [16], among
many other.

A possible disadvantage of QbS training-based methods is
that they need a certain amount of transcribed page images to
train on. But, after adequately trained, these methods can gen-
erally provide (much) greater “precision-recall” performance,

measured for example in terms of average precision (AP).
This AP superiority is explained not only by the well-know
adaptation capability of (statistical) training, but also because
a textual query can better represent the many forms a word can
be rendered into an image, than a specific image corresponding
only to one of these forms. In addition, most statistical
models used for QbS KWS can easily incorporate word image
contextual information through the use of language models.

Conversely, QbE training-free techniques generally provide
lower AP, but they are often considered much more flexible;
not only because no training is needed, but also because a
query can be trivially specified even as a cropped (word) image
region which the user does not know how to transcribe.

KWS approaches are additionally categorized into
“segmentation-based” and “segmentation-free”. The former
assumes that the text images have been previously segmented
into perfect word image regions. Because this is generally
considered rather unrealistic in practice, only the segmentation-
free assumption is considered in this work.

Some authors have proposed to further extend the flexibility
of QbE techniques, letting these techniques to perform also
QbS by means of rendering textual queries in the form of
synthetic query images; see e.g., [12], [17], [18], [19], [20],
[21], [22]. With a similar purpose, a different approach is
followed in [23], where visual features are combined with
textual information to support not only QbE, but also QbS
(under the segmentation-based assumption).

In a symmetric way, given that QbS training-based methods
can provide greater KWS performance, it is interesting to
explore approaches to achieve QbE functionality using QbS
methods. To our knowledge, this idea has never been studied
in depth or developed so far.

We present a statistical approach to achieve the proposed
functionality. Using this approach we consider the Bentham
Dataset QbE KWS task proposed in the recent KWS ICFHR-
2014 Competition1[24]. Under identical setting and constrains
of the “segmentation-free” track, we improve the mean average
precision (mAP) of the winner system by more than 70%
relative (0.715 mAP, compared to 0.419).

The rest of the paper is organized as follows: First (Sec. II)
we briefly introduce the training-based QbS methods used
to develop our probabilistic QbE KWS approach. This ap-
proach is formally presented in Sec. III. Later we describe

1http://vc.ee.duth.gr/h-kws2014/



the experiments conducted to assess the performance of the
proposed approach and the corresponding results (Sec. IV).
Finally, the main conclusions and remarks of this work are
drawn in Sec. V.

II. TRAINING-BASED QUERY-BY-STRING KWS

Here we outline the underlying training-based QbS meth-
ods, that will be used in the next section to develop the
segmentation-based QbE approach. The details of these meth-
ods were originally presented in [4]. For each query word v
and each text-line image region, x, represented by a sequence
of feature vectors, a score S(x, v) is defined. It measures the
confidence that the keyword v is written in x or, in other words,
how likely is that the “line image x is relevant for the keyword
v”. It is computed as:

S(x, v)
def
= max

1≤i≤n
P (v | x, i) (1)

where P (v | x, i) is the probability that the word v is present
in the line image x at horizontal position i. As shown in [4],
this posterior is approximated from the word graph (WG) of
the line image.

A WG is a weighted directed acyclic graph encoding multi-
ple transcripts, along with the corresponding probabilistic and
segmentation information. WGs are obtained as a by-product
of the standard Viterbi decoding, using a traditional HTR
system [25]. Such a system is based on the so called “optical
character models” (traditionally Hidden Markov Models) and
a statistical Language model (generally an N-gram). These
models are trained from adequate amounts of line text images
accompanied with their corresponding transcripts.

This approach has been applied to achieve very good
performance in several QbS KWS tasks [4], [9], [8].

Observe that the previous score can be interpreted as the
probability of a Bernoulli distribution over a random variable
R, corresponding to the binary event “text line x is relevant
for keyword v”.

P (R | x, v) def
=

{
S(x, v) R = 1

1− S(x, v) R = 0
(2)

If P (R | x, v) is well modeled, it will give scores close to
1 for relevant pairs of line images and (string) query keywords,
and close to 0 for non-relevant events.

III. EXTENSION TO PERFORM QUERY-BY-EXAMPLE KWS

A straightforward idea to implement a QbE system, based
on the previous QbS approach, is to recognize each query
image, by means of a standard handwritten word recognizer
and use the obtained transcript as the query string for the QbS
system. However, the probabilistic approach to KWS outlined
in the previous section, leads to a formal, general solution from
which this basic idea is just the simplest approximation.

As in the previous section, let v be a word identifier (string)
and P (R | x, v) the probability that v, is written in an image
(line) region x. Observe that v is unknown in the QbE scenario;
instead, the query is specified by means of an example image,
q. So our problem is to compute P (R | x, q).

The unknown transcript of q, i.e. v, can be introduced in
P (R | x, q) as a hidden variable:

P (R | x, q) =
∑
v

P (R, v | x, q)

=
∑
v

P (R | x, q, v)P (v | x, q)

Now we reasonably assume that P (v | x, q) is independent of
x and that P (R | x, q, v) is independent of q given v, leading
to:

P (R | x, q) =
∑
v

P (R | x, v)P (v | q) (3)

The first term of the sum in Eq. (3) is just the original QbS
probability, for the string v in the image x, while the second
one, P (v | q), is the classification (posterior) probability of a
word recognizer applied to the query image q. This becomes
even more clear if the sum in Eq. (3) is approximated by its
dominating term:

P (R | x, q) ≈ max
v

P (R | x, v)P (v | q) (4)

From this expression, the straightforward idea commented
at the beginning of this section arises as a further approxi-
mation. To this end, the maximization problem (4) is naively
solved by first maximizing the second term and then computing
the first for a transcript v? which maximizes the second, i.e.:

v? = argmax
v

P (v | q)

P (R | x, q) ≈ P (v? | q)P (R | x, v?) (5)

The computation cost involved in these equations can be
reduced if the sum in v of Eq. (3), or the maximization in
v of Eq. (4) and (5), is limited to the set of the n transcripts
with highest P (v | q). Moreover, it has been observed that this
can also improve KWS performance (very) sightly. Therefore,
a value of n = 5 was chosen to perform all the experiments
reported in the next section.

IV. EXPERIMENTS

A. Evaluation Measures

In order to evaluate the performance of the different KWS
systems explored in this work, we used the evaluation software
provided by the organizers of the ICFHR-2014 Competition on
KWS [24]. More specifically, we mainly use the mean average
precision (mAP) to compare the performance of the different
systems.

Since we are in a segmentation-free scenario where the
systems must provide a bounding box with the localization
of each spotted keyword in each document page image, an
additional measure is needed in order to decide whether the
given bounding box is sufficiently correct. The organizers
of the competition used the overlapping area between the
reference bounding boxes and the detected ones, defined as
IOA = A∩B

A , where A and B are the bounding boxes
given by the ground truth and the system, respectively. All
detected keywords with an overlapping area greater than 0.7,
are considered correct2.

2We are aware that this overlapping measure can be easily fooled by letting
the system to provide a bounding box equal to the whole page. However, for
the sake of fair comparison, we did not take advantage of this shortcoming.



Finally, we compare our results to the official scoreboard
of the ICFHR2014 Competition on KWS, using three other
measures adopted during the competition to rank the contes-
tants: precision at 10 (P@10) computes the ratio of the number
of detected keywords which are actually relevant, among the
10 best detected keywords of each query image. They also
reported results using the normalized discounted cumulative
gain (NDCG) metric. The NDCG metric is used when non-
binary relevance judgment is used to evaluate the performance
of the KWS system (i.e. the relevance of a keyword is a real
number in the range [0 − 1]). Two NDCG scores are given:
one assuming a binary relevance judgment and the second
assuming non-binary judgment. Further details about these
evaluation measures are explained in [24].

B. Dataset

The test dataset, is exactly the same used in the ICFHR-
2014 Competition on KWS. It consists of 50 page images of
handwritten manuscripts from the Bentham collection, written
by Jeremy Bentham (1748-1832) and his secretarial staff.

To train and validate the required HMM and bi-gram
models for the proposed KWS approach both transcribed text
images and additional plain text data where used. The training
transcribed images (also a subset of the Bentham collection)
where taken from the original training and validation sets of
the HTRtS ICFHR-2014 Competition [26]. Upon inspection,
these two partitions happened to include some of the pages
in the above mentioned test set of the KWS ICFHR-2014
Competition. Therefore, to prevent unfair “training-on-testing”,
we excluded them from training and validation sets. The
resulting training and validation partitions consist of 300 and
50 page images, respectively, along with their transcripts and
manually segmented line image regions. Statistics of these
partitions are shown in Table I.

The transcripts of the training text images, along with addi-
tional plain text data, were used to train an interpolated bi-gram
model [27]. The additional text was collected from several
sources, including previously transcribed Bentham texts and
selected parts of general texts from ECCO-TCP Eighteenth
Century Texts [28], [27]. Of course, it was carefully verified
that no chunk of text appearing in the text images was included
in this training and validation text corpora. The “Text Data”
rows of Table I provide relevant figures of this textual data set.

TABLE I: Image and text training and validation partitions.
Training Validation

Pages 300 50
Image Data Lines 8 019 1 291
(Bentham page images) Running chars. 373 604 61 859

Character set 93 84

Text Data Running words 10 855 571 12 221
(Bentham + other texts) Lexicon size (words) 78 311 2 602

C. Set of Keywords to be Spotted

The query set is the same used in the ICFHR-2014 Compe-
tition on KWS, consisting of 290 word image queries, obtained
from the Bentham corpus. All query images correspond to
keywords that were written more than 5 times in the considered
test partition, and had a length greater than 6 characters. The

query images come from several writers, have different writing
styles, font sizes, and noise. Query images have to be spotted in
images of pages written by the same or different writers and/or
exhibiting different writing variations. Fig. 1 shows three query
images corresponding to the same keyword to illustrate the
query set variability.

Fig. 1: Examples of three query images showing the variations
of the same keyword, “together”.

D. Experimental Set-up

We used the line segmentation given in the training set
and extracted a 24 feature vector sequence from each text
line, following [29]. Using the Baum-Welch algorithm, a left-
to-right HMM was trained for each of the most frequent 87
characters appearing in the training set, such as lowercase
and uppercase letters, symbols, special abbreviations, etc.
The HMM metaparameters used in the final HMM training
were optimized on the 50 pages of validation partition. As
a result, all character HMMs were set up to have 6 states
with 128 Gaussian mixtures per state. Additionally a bi-gram
language model was trained, with Kneser-Ney smoothing,
on the external Bentham text corpus (see Table I). Language
model metaparameters such as grammar scale factor and word
insertion penalty were also tuned on the validation set.

Then, we extracted the text line images from the test page
images following two approaches: manual line segmentation
and an automatic line segmentation based on full-page hori-
zontal projection profile (HPP) [30]. For each line image, a
WG with a maximum input degree of 15 is obtained and then
used to compute the QbS scores (see Sec. II).

We test our KWS approaches corresponding to Eq. (3-5) in
three different scenarios, which are increasingly close to the
QbE KWS setting:

1) Both the line segmentation of page images and the
transcripts of the query images are given (this would
correspond to conventional line-level QbS KWS but,
in addition, the horizontal positions of the spotted
words within the spotted lines must be determined).

2) Line segmentation is given, but only raw, untran-
scribed query images are used. (this would corre-
spond to QbE KWS with pre-segmented lines).

3) Line segmentation is obtained automatically and only
untranscribed query images are used (this is the
most standard segmentation-free QbE KWS setting,
as used in the ICFHR-2014 KWS Competition).

In addition, under Scenario 3, we also try a totally naive
baseline approach in which the best transcripts obtained by the
query image word recognizer are used to plain-text search on
the (error-prone) raw text (and the corresponding line image
word segmentations) provided by a state-of-the-art handwritten
text recognizer for automatically segmented lines. This recog-
nizer was based on the same language model and character
HMMs used here to compute P (v | x, i) in Eq. (1). This will
be referred to as “raw transcripts” below.



A minor, but crucial detail, is that all the approaches
described in Sec. II and III provide relevance scores for whole
line images. However, the ICFHR-2014 KWS competition
rules require also to determine the bounding boxes of the
spotted words. To this end, we simply obtain the highest
likelihood segmentation of the word v in the line image x.
This effectively means that if a keyword appears twice in a
line, only one match will be retrieved. In practice, this did not
affect the results significantly, since most of the test lines only
contain one instance of the queried keyword3.

E. Results

The approximations to P (R | x, q) given by Eq. (3-5) were
used to evaluate the mAP obtained in the different scenarios
described in Sec. IV-D. As expected, Eq. (3) achieved the best
results; but only insignificantly better than those of Eq. (4)
which, in turn, were only slightly better than those of Eq (5).
For the sake of conciseness, only the results of Eq. (4) are
reported in Table II, along with the raw transcripts naive
baseline for Scenario 3 discussed in Sec. IV-D.

TABLE II: Mean average precision in different scenarios, with
P (R | x, q) approximated by Eq. (4).

Scenario 1 Scenario 2 Scenario 3 3 + Raw transcripts

0.863 0.865 0.715 0.547

It may seem a contradiction that the mAP achieved in
Scenario 1 is (slightly) lower than in Scenario 2. Nevertheless
it is perfectly understandable since, in Scenario 2, P (R | x, q)
is affected by both P (v | q) and P (R | x, v). Thus, for
instance, if the given transcript v is not clearly written in an
image line x, then in Scenario 1 P (R | x, v) can become
close to 0. However, one (or more) similar word(s) v′ may
exist such that both P (R | x, v′) and P (v′ | q) are significant;
then Scenario 2, using Eq. (4) will give a larger P (R | x, q),
thereby achieving better precision and recall. Of course, this
will not happen very often, and will have, in general, tiny
effects over the mAP, as it happens in this experiment, probably
because of the small query set used in this task (290 query
images, over 50 pages). In general, it is expected than the
closer we are to the pure QbE case, the lower mAP is achieved,
since the KWS system has to deal with more uncertainty.
The difference between Scenario 2 and Scenario 3 support
this hypothesis. Finally, as expected, it can be seen that the
naive raw transcripts method actually falls short of providing
competitive performance.

Table III shows the official scoreboard of the ICFHR-2014
Competition on KWS, for the Bentham dataset, and the results
achieved by the method presented in this work (i.e. Scenario
3, using Eq. (3)). At the expense of requiring training data,
our proposed QbE KWS approach is highly superior to any of
the others, regardless the evaluation metrics used.

Fig. 2 shows mean Recall-Precision curves of our methods
and that of the ICFHR-2014 KWS Competition winner system.

3Rather than the best match, the N-best matching positions of a word in
a line can be trivially obtained. But, in practice, this is completely irrelevant
since real use only demands finding the lines where words are likely to appear
(this also makes superfluous to find accurate bounding boxes).

TABLE III: Comparison between the official scoreboard of
the ICFHR-2014 Competition on KWS and this work.

P@5 NDCG (bin.) NDCG mAP

Team 1 0.611 0.640 0.657 0.419
Team 3 0.568 0.518 0.536 0.372
Team 4 0.341 0.363 0.376 0.209
Team 5 0.550 0.513 0.531 0.347

This work 0.879 0.822 0.823 0.715
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Fig. 2: Recall-Precision curves achieved in this work, along
with that of the winner of the ICFHR-2014 KWS Competition.

V. REMARKS AND CONCLUSIONS

We presented an approach to tackle the query-by-example
(QbE) scenario using a probabilistic KWS system designed
under the query-by-string (QbS) framework.

Not only we have shown that QbE can be properly ap-
proached from the QbS perspective, but also that much higher
performance can be obtained in this way, assuming that an
adequate amount of training data is available. We tested our
system for increasing levels of “difficulty”, going from a QbS
scenario to full QbE, under different levels of supervision.

We compared our system under the same conditions than
other four systems designed for QbE, using the evaluation data
and tools of the ICFHR-2014 Competition on Handwritten
KWS. The approach presented in this paper showed to be much
better than any of the contestants, for a variety of evaluation
metrics. More specifically, it provided more than a 70% relative
increase in the mean average precision (mAP) metric, with
respect to the winner team of the competition (0.715 vs. 0.419).

Moreover, much larger improvements are possible by
avoiding or reducing line segmentation errors. As shown by
results of scenario 2 (which is line-segmentation error-free),
the mAP of the proposed QbE approach using Eq. (4) jumps
up to 0.864, or a relative mAP increase of 106% over the
best result so far. In our upcoming work, we will try to
completely avoid these segmentation errors by extending our
KWS approaches so as to avoid explicit line segmentation.

It is important to remind that the dramatic improvements
achieved by the proposed methods came at the cost of requiring



sufficiently large image and text training data sets. In the
present experiments we have used all the relevant training
data which was easily available. However, perhaps the most
important question that arises from this work is how much
training data is really enough to effectively train a KWS
system based on the proposed approaches, and whether these
data must come from the same collection of documents, or
maybe the required models can be transferred from a different
task. This, and other questions, need further research to be
answered, but this work is a successful step towards.
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