High Performance Query-by-Example Keyword Spotting Using Query-by-String Techniques

Enrique Vidal, Alejandro H. Toselli and Joan Puigcerver - [ahector, evidal, joapuipe]@prhlt.upv.es

1. INTRODUCTION

Key Word Spotting (KWS): find probable occurrences of a keyword in a collection of document images.

Query-by-Example (QbE): The keyword is a text image snippet. Do not generally need training, but KWS performance is *low*

Query-by-String (QbS): The query is the text itself.

Training from transcribed text images, KWS performace can be *high*

Can QbE be approached using QbS technology?

5. LINE IMAGE REGIONS

To allow catching *linguistic context*, line-shaped image regions are needed. Two empirical conditions explored:

- 1. Line regions are given, but the system determines horizontal positions of the spotted words (conventional line-level QbS KWS).
- 2. Automatic line segmentation and horizontal word position determination (the most standard segmentation-free QbE KWS setting, as used in the ICFHR-2014 KWS competition).

2. TRAINING-BASED QUERY-BY-STRING KWS

Two models are trained from training transcribed text images: *Optical Model* (OM) and *Language Model* (LM). Let \mathcal{M} denote these models.

For a given word v and (line shaped) image region x from a test image, \mathcal{M} can be used to compute the *probability that* v *is present in* x, *at horizontal position* $i: P(v \mid x, i), 1 \le i \le n = |x|$.

The Relevance of x for keyword v is a binary random variable, \mathcal{R} . Then:

$$P(\mathcal{R}=1 \mid x, v) \equiv P(\mathcal{R} \mid x, v) \approx \max_{1 \le i \le n} P(v \mid x, i)$$
(1)

3. Query-by-Example through QbS KWS

For QbE, $P(\mathcal{R} \mid x, q)$ is needed, where *q* is the query *text image snippet*.

• The true transcript of q is *unknown* (or *"hidden"*), but using \mathcal{M} we can compute $P(v \mid q)$ for all possible transcripts, v. Then:

$$P(\mathcal{R} \mid x, q) = \sum P(\mathcal{R}, v \mid x, q)$$

6. Experimental Results

• KWS results for different equations and line extraction assumptions:

Equation	(1)	(3)	(3)	(5)
Line Extraction	1	1	2	2
mAP	0.863	0.865	0.715	0.547

Results for Eq.(2-4) are very similar to Eq.(3); Eq.(1) result corresponds to QbS; Result in red: identiacal test conditions as in ICFHR-2014 KWS contest.

• Mean Recall-Precision curves achieved in this work, along with that of the winner of the ICFHR-2014 KWS competition:

$$= \sum_{v} P(\mathcal{R} \mid x, q, v) P(v \mid x, q)$$

$$= \sum_{v} P(\mathcal{R} \mid x, v) P(v \mid q) \qquad (2)$$

$$\approx \max_{v} P(\mathcal{R} \mid x, v) P(v \mid q) \qquad (3)$$

• A further approximation (which explains a simple, intuitive idea): use \mathcal{M} to automatically transcribe the query snippet *q*; then:

$$v^{\star} = \arg \max_{v} P(v \mid q) \quad // \text{ query image recognition}$$

$$P(\mathcal{R} \mid x, q) \approx P(v^{\star} \mid q) P(\mathcal{R} \mid x, v^{\star}) \quad (4)$$

• A final, totally naïve *baseline* approach: use \mathcal{M} to automatically transcribe also the text image region x; then do just text-based KWS using the (noisy) recognized word v^* and text w^* :

$$w^{\star} = \arg \max_{w} P(w \mid x) \quad // \text{ image region recognition}$$
$$P(\mathcal{R} \mid x, q) \approx \begin{cases} 1 & \text{if } v^{\star} \in w^{\star} \\ 0 & \text{otherwise} \end{cases}$$
(5)

• Comparison between the official scoreboard of the ICFHR-2014 KWS contest and this work:

	P@5	NDCG (bin.)	NDCG	mAP
Team 1	0.611	0.640	0.657	0.419
Team 3	0.568	0.518	0.536	0.372
Team 4	0.341	0.363	0.376	0.209
Team 5	0.550	0.513	0.531	0.347
This work	0.879	0.822	0.823	0.715

4. DATASETS AND KEYWORDS

Test images & keywords: exactly as in the ICFHR-2014 KWS competition.

OM training data: Transcribed images from ICFHR-2014 HTRtS contest; additional Bentham texts used to train the LM:

		Training	Validation
Image Data (Bentham page images)	Pages Lines Running chars. Character set	300 8 019 373 604 93	50 1 291 61 859 84
Text Data (Bentham + other texts)	Running words Lexicon size (words)	10 855 571 78 311	12 221 2 602

7. DISCUSSION AND FUTURE WORK

• Yes: QbE can be properly approached from the QbS perspective.

• QbS leverages the use of training data, leading to superb KWS results.

• Even higher performance would be possible by avoiding or reducing line segmentation errors \Rightarrow *Future work*

• Results of this work were achieved using large image and text training data sets \Rightarrow *Future work*

• *Future work*: Determine how much training data is really enough, and whether optical and language models trained for a different, large collection can be used to obtain competitive results.