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Abstract—Traditionally, the HMM-Filler approach has been
widely used in the fields of speech recognition and handwritten
text recognition to tackle lexicon-free, query-by-string keyword
spotting (KWS). It computes a score to determine whether a given
keyword is written in a certain image region. It is conjectured,
that this score is related to the confidence of the system, respect
to the previous question. However, it is still not clear what this
relationship is.

In this paper, the HMM-Filler score is derived from a proba-
bilistic formulation of KWS, which gives a better understanding
of its behavior and limits. Additionally, the same probabilistic
framework is used to present a new algorithm to compute the
KWS scores, which results in better average precision (AP), for a
keyword spotting task in the widely used IAM database. We show
that the new algorithm can improve the HMM-filler results up
to 10.4% relative (5.3% absolute) points in AP, in the considered
task.

I. INTRODUCTION

In the recent years, incredibly large quantities of hand-
written documents have been, and are being, scanned into
digital images and being stored by digital libraries. Despite this
enormous effort for preservation and aid accessibility, most
of the information contained in these documents is largely
inaccessible, since the transcription of these documents is
not usually available, and even more, it would be extremely
expensive to accurately transcribe all of them. Thus, automated
methods are needed to search accurately and efficiently for
information on such collections.

Keyword Spotting (KWS) was introduced in the Speech
Processing field many years ago for similar purposes, and has
been recently adopted for processing handwritten documents.
Traditionally, two scenarios have been proposed for KWS,
depending on the type of the user query: query-by-example,
where the query is an exemplar image, on query-by-string,
where it is a simple string. The fundamental question that both
approaches try to answer is: given a keyword and a image
region, is the keyword written in the image?

One of the most popular methods for query-by-string KWS
on handwritten documents, is the one known as “HMM-
Filler” [1], [2]. This approach rests on the idea of using a
filler (or “garbage”) model and, a word-specific model for
each query keyword, all of them built using character hidden
Markov models (HMMs). Typically, HMM-Filler is used for
line-oriented KWS (the image regions are lines of document

pages). The HMM-Filler gives an score to help to determine,
without any kind of segmentation into words or characters,
whether the given keyword appears in the line image.

Other methods have been presented in the literature for
similar purposes [3], but one of the attractive features of the
HMM-Filler approach is that it is “lexicon-agnostic”; that is, it
does not require any predefined word lexicon. The downsides
of this method is that it requires the search to be done on-
the-fly, which entails much higher search times, compared to
index-based methods [3]. Additionally, the lack of context
information of the original HMM-Filler model typically brings
a lower performance than lexicon-based models. However,
these two problems have been addressed in the literature to
improve the performance of the original HMM-Filler model
[4], [5], [6].

Surprisingly, and despite the huge popularity and works
related to the HMM-Filler model, the theory and probabilistic
interpretation of the scores computed by this, have not been
studied yet in the literature. And thus, it is not clear if superior
performance can be achieved under the same constraints under
which the HMM-Filler model is applied.

In the present work, we give a probabilistic interpretation
of KWS, from which the scores of the HMM-Filler model can
be interpreted probabilistically. Furthermore, we show that the
performance achieved by the traditional HMM-Filler can be
substantially improved, thanks to a more advanced algorithm,
which essentially entails the same algorithmic complexity.

The rest of the paper is organized as follows: Sect. II
outlines the traditional HMM-Filler approach to KWS. Sect. III
introduces the probabilistic framework used to tackle the
problem presented by KWS. The traditional HMM-Filler is
derived from this framework, and a new algorithm is proposed,
in this section. Sect. IV describes the experiments performed
to compare both algorithms and analyzes the results obtained.
Finally, the conclusions of this work are drawn in Sect. V.

II. HMM-FILLER APPROACH TO KWS

Traditionally, the HMM-Filler approach [1] has been
widely used in the KWS community. This approach typically
uses character HMMs with diagonal Gaussian Mixture Models
as the emitting probability density function in the states.

From these character HMMs, two composite models are
built: a generic “filler HMM” or garbage model, and a specific



“keyword HMM” (both depicted in Fig. 1). The filler model
is able to process any arbitrary sequence of characters, while
the keyword model is constrained to sequences that contain
the keyword v.
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Fig. 1: (a) “Filler HMM”, f , and (b) “keyword HMM”, kv ,
built for the keyword v = “word”.

Then, a spotting confidence score S(v,x) is computed for
each keyword v and image region x. Informally, the higher the
score is, the more certain is the system that the given keyword
is written in the image region.

S(v,x) =
max
w∈Σ∗

log pkv
(w,x)− max

w′∈Σ∗
log pf (w′,x)

|v |
(1)

The denominator of the score is introduced by convenience,
in order to normalize the scores of long keywords. Observe
that the likelihood of a sequence decays exponentially with its
length. Typically |v | is the length of the keyword in number
of frames, given by the implicit HMM-state segmentation.
However, in this work we use the average length in frames of
the keyword v, given by multiplying the number of characters
in v by the average number of frames consumed by each
character, when recognizing the validation set.

In the following section, a general probabilistic framework
for KWS is introduced, which is used to derive a probabilistic
interpretation of the score S(v,x).

III. PROBABILISTIC FRAMEWORK FOR KWS

In order to tackle the question addressed in the introduction
section from a probabilistic point of view, we define a binary
random variable R, which denotes whether the image x is
relevant for the query keyword v. We consider an image to be
“relevant” if v is written in it.

Then, the probability distribution P (R | Q,X ) can be
used to answer the question presented by KWS, where Q is
a random variable over all possible query keywords and X is
defined over all possible images. Observe that, the probability
that we seek to compute is P (R = 1 | Q = v,X = x).

As we indicated before, we consider an image to be
relevant if the given keyword is written in it. Thus, the

probability P (R = 1 | Q = v,X = x) is intuitively related to
the distribution of the different possible transcriptions of the
image region, i.e. P (W | X ), where W is a random variable
over all possible sets of transcriptions.

Following this idea, the distribution P (R | Q,X ) is
marginalized over all possible transcriptions W of X . Then,
taking into account that all relevant transcriptions must include
the keyword v, we obtain:

P (R = 1 | Q = v,X = x) =∑
w′∈Σ∗

P (R = 1,W = w′ | Q = v,X = x) =∑
w∈Σ∗ v Σ∗

P (W = w | Q = v,X = x) (2)

Since w contains v, it is reasonable to assume that P (W =
w | Q = v,X = x) is independent of v, resulting in:

P (R = 1 | Q = v,X = x) ≈
∑

w∈Σ∗ v Σ∗

P (W = w | X = x)

(3)

Applying Bayes rule to P (W = w | X = x), in the
previous equation, gives:

P (R = 1 | Q = v,X = x) =
∑

w∈Σ∗ v Σ∗

p(W = w,X = x)

p(X = x)

(4)

Observe that p(X = x) does not depend upon the keyword,
thus it can be extracted from the sum. Moreover, it can be
marginalized over all possible transcriptions w′ of the image
region, leaving:

P (R = 1 | Q = v,X = x) =

∑
w∈Σ∗ v Σ∗

p(W = w,X = x)∑
w′∈Σ∗

p(W = w′,X = x)

(5)

From now on, for sake of clarity, we will omit the random
variable names, except for R = 1, which we will write simply
as R. Thus, the previous equation is simply rewritten as:

P (R | v,x) =

∑
w∈Σ∗ v Σ∗

p(w,x)∑
w′∈Σ∗

p(w′,x)
(6)

In summary, the probability of an image x being relevant
for a keyword v, P (R | v,x), is equal to the sum of the pos-
teriors of all transcriptions w of line image x, which contain
the keyword v (see Eq. 3). And this can be decomposed into a
fraction where the numerator is the sum of the likelihoods of all
transcriptions containing the keyword v, and the denominator
is the sum of the likelihood of all possible transcriptions, with
no restrictions (see Eq. 6).

As a final note, observe that the problem of the exponential
decay of the likelihood p(x,w) with the length of x and w will
also affect Eq. 6 as it affected the HMM-Filler scores, since
it is intrinsic in the modeling of p(x,w). Thus, the heuristic
used in Eq. 1 is also used here during the experimental phase,
giving:

logP ′(R | v,x) =
logP (R | v,x)

|v |
(7)



A. Probabilistic interpretation of HMM-Filler

The probabilistic interpretation of the HMM-Filler ap-
proach, introduced in section II, comes after applying a Viterbi
approximation to both the numerator and the denominator of
Eq. 6. That is, the sum is substituted by the maximum:

P (R | v,x) ≈
max

w∈Σ∗ v Σ∗
p(w,x)

max
w′∈Σ∗

p(w′,x)
(8)

By simply taking the logarithm of the previous expression
and applying the same heuristic than in Sect. II, a very similar
expression to Eq. 1 is obtained.

logP (R | v,x) ≈
max

w∈Σ∗ v Σ∗
log p(w,x)− max

w′∈Σ∗
log p(w′,x)

|v |
(9)

There is a subtle difference between Eq. 1 and Eq. 9:
observe that the former used two probability distributions pf
and pkv

, while the latter only uses p. However, observe that
all paths in the model kv are found in f . Plus, in the classical
filler no weights are used in the f and kv automatons. Thus,
maxw∈Σ∗ v Σ∗ log pf (w,x) = maxw∈Σ∗ log pkv (w,x), which
used together with Eq. 9 and defining p = pf results in the
score defined in Eq. 1.

logP (R | v,x) ≈
max

w∈Σ∗ v Σ∗
log pf (w,x)− max

w′∈Σ∗
log pf (w′,x)

|v |
=

max
w∈Σ∗

log pkv
(w,x)− max

w′∈Σ∗
log pf (w′,x)

|v |
=

S(v,x) (10)

B. Exact solution

The denominator of the fraction in Eq. 6 is the likelihood
of the image region. Thus, can be obtained by both the forward
and backward algorithms, which have been widely studied in
the literature. Furthermore, this factor does not depend on
the query keyword v, and thus can be precomputed to save
computational efforts during query time.

With respect to the numerator, observe that the “keyword
HMM” model introduced in Sect. II can be used to compute
this value. More precisely, the forward algorithm can be used
again to obtain the total likelihood of all possible transcriptions
which include the query keyword v. We implemented this
forward algorithm to work directly over lattices, in order
to speed-up the computations, as explained in the following
subsection.

C. Improving computational cost

As explained in [7], the computation time of the likelihood
given by the specific “keyword HMM” is too expensive to be
done on-the-fly for each query keyword, in realistic scenarios.
A much faster alternative is to approximate that likelihood by
means of a character-lattice (CL), generated using the generic
“filler HMM”.

Following the same motivation, in our experiments, we
approximated the solution to Eq. 6 and Eq. 8 by means of
the CL of the image x.

Observe that the denominator of Eq. 6 can be easily
computed as the forward likelihood in the final node of the
CL. In order to compute the numerator from the CL, one must
sum only the likelihood of those paths containing the keyword
v.

First, an algorithm based on the well-known Knuth–
Morris–Pratt algorithm [8] for string matching, is used to build
a DFA that accepts all the sequence of characters in Σ∗ that
contain the keyword v, that is the regular language Σ∗ vΣ∗.
Fig. 2 shows this automaton for the exemplar keyword “word”.
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w
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Σ

Fig. 2: Complete DFA accepting all strings containing the
sequence of characters “word”.

Then, one can simply intersect the previous DFA with the
image CL, obtaining a weighted DAG which encodes all the
possible paths from the CL, containing the keyword v. The
forward likelihood in the final state of the intersection graph
is equal to the sum in the numerator of Eq. 6.

Moreover, the step of intersection and the forward compu-
tation can be directly addressed using an embedded dynamic-
programming algorithm which avoids creating the keyword
DFA and intersecting the graphs explicitly, and has the same
asymptotic running time, O((|V |+ |E|)× |v |), where V and
E are the set of nodes and edges of the graph, respectively.

D. Context modeling improvement

Observe that Eq. 6 and Eq. 8 do not depend on any concrete
model for the distribution p(w,x). Thus, more advanced
models rather than the HMM-Filler model can be employed to
model it, achieving further improvements in the performance
of the KWS system.

More precisely, Fischer et al. [9] suggested to use char-
acter LM to improve the performance of HMM-based KWS.
The main idea is that a prior distribution over the character
sequence can be used (i.e. a n-gram LM), instead of using
the automaton “Filler HMM”. Following that work, Toselli
et al. [5] used high order character n-grams to boost the
performance of CL-based KWS systems.

In our experiments, we follow the ideas of [9], [5], in order
to show how the two approximations to P (R | v,x), described
earlier, are affected by the increasing size of the character n-
gram models.



IV. EXPERIMENTS

A. Corpora

The IAM dataset [10] is used during experimentation to
validate the theoretical improvements introduced in Sect. III.
The IAM dataset consists of English handwritten texts from
many writers. The same training, validation and test partitions
have been used in previous KWS works [9], [4]. The line
segmentation provided by the original corpus is used in this
work. Additionally, the LOB text corpus [11] was used to build
a 20K-word lexicon and train the language model (test lines
were excluded from LOB). Tab. I shows the basic statistics of
the corpus.

TABLE I: Basic statistics of the IAM database and its parti-
tions.

Training Validation Test Total

Running chars 269 270 39 318 39 130 347 718
Running words 47 615 7 291 7 197 62 103
Lines 6 161 920 929 8 010

Char set size 72 69 65 81
Lexicon size 7 778 2 442 2 488 9 809

B. Set of Keywords to be Spotted

This work uses the same set of queries as in [4], [12], [3].
It contains all words of the training partition, excluding stop
words and punctuation symbols. Among the 3 291 keywords
to be spotted (M ), only 1 098 are relevant (written) in some of
the 929 test lines (N ). Clearly, non-relevant keywords are also
interesting, since the system may erroneously find other similar
words, thereby leading to important precision degradations.
The main information about the query set is summarized in
Tab. II.

TABLE II: Basic statistics of the selected keyword set in the
test set.

Total Relevant

Line images (N ) 929 855
Keywords (M ) 3 421 1 081
Line-query events (N ·M ) 3 178 109 1 916

C. Evaluation measures

The interpolated average precision (AP) [13] is used in this
work to compare the different KWS methods. This summarizes
the recall and interpolated precision measures into a single
scalar value, corresponding to the area under the Recall-
Precision (RP) curve.

Observe that mean average precision (mAP), chosen by
many authors to report their performance, is ill-defined when
some keywords are non-relevant. Thus, it cannot be used for
the scenario considered in this work.

D. Experimental setup

The required likelihoods are computed using a left-to-right
character-HMM, trained using the Baum-Welch algorithm,
using the training line images of the IAM dataset and the pro-
vided transcription. Specific details of the image processing,
feature extraction, and HMM training are described in [1]. All
parameters were adjusted using the validation data, optimizing
the character error rate (CER).

In order to generate the CL, we used different size n-gram
language models, using the Kneser-Ney back-off technique.
The n-grams were trained on the well-known Lancaster-
Oslo/Bergen text corpus (LOB) [11]. Since the IAM corpus
was build from the LOB, we excluded from the latter all
sentences used in the test partition of the IAM database.

The CLs were generated using the HTK software [14]
or the iATROS [15], depending on the order of the n-gram
models. In order to limit the size of the generated CLs, a
maximum node input degree (NID) of 30 edges, and a beam
search was used during decoding. Additionally, the grammar
scale factor and character insertion penalty parameters were
adjusted using the validation data, as we did before, optimizing
CER.

All the experimental setup is essentially the same as the
one described in [5]. Moreover, we used exactly the same CLs.
Thus, further details can be found in the previous paper, if
needed.

E. Results

During the analysis of the results, we refer to Eq. 8 as
“Viterbi”, since it is the Viterbi approximation to Eq. 7, which
is computed using a “Forward”-like algorithm. Tab. III shows
their average precision results.

TABLE III: Average Precision results in IAMDB, using
different n-gram sizes and approximations to P (R | v,x).
“Viterbi” refers to Eq. 8 (same as HMM-Filler), and “Forward”
to Eq. 7.

n-gram 0 1 2 3 4 5 6

Viterbi 0.345 0.375 0.412 0.454 0.488 0.499 0.505
Forward 0.346 0.381 0.418 0.471 0.528 0.544 0.558

Abs. improv. 0.001 0.006 0.006 0.017 0.039 0.045 0.053
Rel. improv. 0.3% 1.8% 1.5% 3.7% 8.0% 9.1% 10.4%

The exact computation proves to be better than the Viterbi
case, as expected by the theoretical development from Sect.
III. Although for low-order n-gram LMs, the two methods
perform similarly, when the size of the LM increases, the exact
computation of P (R | v,x) clearly shows to be superior to
its Viterbi approximation.

It is specially remarkable the fact that the absolute and
relative improvements, respect the Viterbi approximation, are
almost monotonically increasing with the size of the n-gram
(the only exception is for the bi-gram case). We believe that
this is because of with low-order n-grams, the distributions
learned by the LM are too noisy, and the benefits of the
proposed algorithm are diminished by this noise.
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Fig. 3: Recall-Precision curve of the Viterbi and Forward
approximations to P (R | v,x), both using a 6-gram language
model.

Fig. 3 shows the Recall-Precision curves of the KWS sys-
tem using the Viterbi approximation and the exact computation
of P (R | v,x), using a 6-gram LM, and gives more insights
about the behavior of two algorithms. The flat regions in both
curves tell that there are many events with the same (high)
score. The forward algorithm seems to discriminate better
between the true relevant events and the false positive cases,
which explains the increase in the maximum precision with
only a slight drop in the minimum recall. Since the flat region
is present in both cases, we hypothesize that it is due to the
underlying model for p(x,w), and not the algorithms.

Finally, once the confidence of the underlying probabilistic
model decays, both algorithms behave very similar as shown
by the RP curve.

V. CONCLUSION

First, this paper introduced a probabilistic framework for
Keyword Spotting (KWS). The core of the framework is to
tackle the KWS task using a probability distribution over a
binary variable R, conditioned on the query keyword v and
the image region x, P (R | v,x).

Later, from this probabilistic model, the traditional HMM-
Filler model was derived and interpreted as an approximation
to the previous probability. Furthermore, we presented an exact
algorithm to compute P (R | v,x), based on the well-known
forward algorithm for HMMs.

We have experimentally shown that the proposed algorithm
is always superior to the regular HMM-Filler, and yields to
significant improvements in the accuracy of the KWS system,
especially when used together with high order n-gram LMs.
The improvements in AP are thanks to a achieving a better
precision than the HMM-Filler model. Additionally, our results
suggest that higher differences may be achieved with bigger
n-gram models, which would also increase the AP. Notice that
high-order n-grams only increase the time of building the CLs,
which is carried only once, and do not affect the query-time,
the most important from the user’s perspective.

More research needs to be carried out in order to find
where the benefits of the forward algorithm for computing

P (R | v,x), presented in this work, reach their maximum.
Anyhow, the presented work shows significant improvements
over the widely used HMM-Filler approach, on a widely used
handwritten text database.
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