
Are Multidimensional Recurrent Layers Really
Necessary for Handwritten Text Recognition?

Joan Puigcerver
Pattern Recognition and Human Language Technology Research Center

Universitat Politècnica de València
46022 Valencia, Spain

Email: joapuipe@prhlt.upv.es

Abstract—Current state-of-the-art approaches to offline Hand-
written Text Recognition extensively rely on Multidimensional
Long Short-Term Memory networks. However, these architec-
tures come with quite an expensive computational cost, and we
observe that they extract features visually similar to those of
convolutional layers, which are computationally cheaper. This
suggests that the two-dimensional long-term dependencies, which
are potentially modeled by multidimensional recurrent layers,
may not be essential to achieve a good recognition accuracy, at
least in the lower layers of the architecture. In this work, an
alternative model is explored that relies only on convolutional
and one-dimensional recurrent layers that achieves better or
equivalent results than those of the current state-of-the-art
architecture, and runs significantly faster. In addition, we observe
that using random distortions during training as synthetic data
augmentation dramatically improves the accuracy of our model.
Thus, are multidimensional recurrent layers really necessary for
Handwritten Text Recognition? Probably not.

I. INTRODUCTION

Recurrent neural networks, and particularly Multidimen-
sional Long Short-Term Memory (MDLSTM) networks [1],
have been widely adopted by the Handwritten Text Recogni-
tion (HTR) community. MDLSTM currently hold the state-
of-the-art performance on most (if not all) of the benchmarks
used to measure the advances in the field.

The difference between regular Long Short-Term Memory
(LSTM) networks [2] and MDLSTM is that, the former intro-
duce a recurrence along the axis of one-dimensional sequences
(for instance, the time-axis in speech, or the writing-direction
in images), while the latter have a recurrence along two axes
(typically the x-axis and y-axis in images). This allows the
latter to process two-dimensional data of unconstrained size,
potentially capturing long-term dependencies across both axes.

In the HTR field, these networks are typically used to
transcribe images of text lines. Multiple two-dimensional
MDLSTM layers (2D-LSTM) are stacked in order to extract
meaningful features from the images (usually, in combination
with other types of layers, like convolutional and pooling
layers). Then, the 2D data is transformed into a 1D sequence to
obtain the character-level transcription of the input line image.
This architecture is, essentially, the core of all the successful
approaches to line-level HTR in the recent years [1], [3], [4].

Nevertheless, 2D-LSTM networks are quite computationally
expensive, specially when compared to other types of opera-
tions like convolutions. When using a large number of parallel

processing units (i.e. GPUs), the best parallel implementation
of a 2D-LSTM layer has a computational complexity of
O((W +H) ·D+C), while the computational complexity of
a naive implementation of a convolutional layer is O(C · S).
Here, H and W are the height and width of the image, C
and D are the number of input/output channels and S is the
size of the receptive field of the convolution operation (e.g.
3 × 3). Typically, in the lower layers of the neural networks,
which dominate the computational cost of traditional models,
(W +H) ·D+C is much larger than C ·S (typically by one
or two orders of magnitude).

In addition, an inspection of the features extracted by the
2D-LSTM in the lower layers shows that they are visually
similar to the two-dimensional convolutional ones (see Fig. 1).
This suggests that, in order to extract meaningful features from
the images, one does not probably need the large context
provided by recurrent layers, at least in the lower layers of
the stack.

(a) 2D-LSTM

(b) Convolutional

Fig. 1: Randomly selected features extracted after a 2D-LSTM
and after a convolutional layers, at comparable positions of the
model.

These two observations indicate that 2D-LSTM could be
replaced by convolutional layers, at least at some extent in the
lower layers, reducing the required computational resources
with no (or little) loss on accuracy. Finally, it is reasonable
to assume that in the upper layers of the network, one-

dimensional recurrent layers might be powerful enough to
model the language dependencies, given that languages are
well modeled by one-dimensional sequences (of characters).

A. Contributions

In this work, we aim to investigate whether MDLSTM
networks are strictly required to achieve state-of-the-art per-
formance for line-level HTR, or cheaper layers (in terms of
computational resources) can be used instead. We first review
the basics of HTR to the less-familiar readers (Section II) and
then:

• We present a neural network architecture based on convo-
lutional and 1D-LSTM layers to perform line-level HTR
(Section III).

• We provide statistically-sound empirical study showing
that our architecture provides similar or better accuracy,
when compared to the current state-of-the-art 2D-LSTM
architecture, and it is strictly superior in terms of speed
(Section IV-B and IV-C).

• We show that by performing adequate random distortions
on the training images one can significantly reduce the
error rates (Section IV-D).

• We release our software and experimentation pipeline
allowing other researchers to fairly reproduce our results1.

II. HANDWRITTEN TEXT RECOGNITION WITH
RECURRENT NEURAL NETWORKS

HTR aims to recover the handwritten text represented in an
input signal. Particularly, in the case of offline HTR, the input
signal typically is a (manually or automatically) segmented
line of a scanned handwritten document (e.g. handwritten
forms, historical manuscripts, etc). In the recent decades, this
problem has mostly been addressed statistically by trying to
solve the following optimization problem:

ŷ = arg max
y

Pr(y | x) (1)

Where x is the input signal, represented as a sequence
of frames, xt, and y is a sequence of textual symbols, yl
(typically words or characters). Since the real probability dis-
tribution Pr(y | x) is unknown, it is modeled by a parametric
distribution Pθ(y | x), whose parameters are fit according to
the Maximum Likelihood Estimation (MLE) criterion, over
a set of training samples. Then, the solution to Eq. (1) is
approximated by:

ŷ ≈ arg max
y

Pθ(y | x) (2)

Traditional models for Pθ(y | x) are the composition of
Hidden Markov Models (HMM) with Gaussian Mixture Model
emissions and n-gram Language Models (LM). Nevertheless,
current solutions widely rely on Recurrent Neural Networks.
Particularly, Connectionist Temporal Classification (CTC) al-
lows to train a neural network modeling Pθ(y | x) end to end2

[5].

1https://github.com/jpuigcerver/Laia/
2CTC is used to locally optimize θ̂ = argmaxθ

∑
(x,y)∈T Pθ(y | x)

TABLE I: Details of the configuration used in the convolu-
tional blocks of our architecture.

Configuration Values

Conv. filters 16 – 32 – 48 – 64 – 80
Maxpool (2× 2) Yes – Yes – Yes – No – No
Dropout 0 – 0 – 0.2 – 0.2 – 0.2

III. PROPOSED SYSTEM

A general overview of the architecture is depicted in Fig-
ure 2. In this section we explain the details of each of the
blocks of our architecture, and some other details of our
system.

A. Architecture

1) Convolutional blocks: Each convolutional block contains
a two-dimensional convolutional layer (Conv) with a kernel
size of 3×3 pixels, with both horizontal and vertical stride of
1 pixel. The number of filters at the n-th Conv layer is equal
to 16n. In order to reduce overfitting, we apply Dropout [6] at
the input of some Conv layers (with dropout probability equal
to 0.2). After the Conv layer, batch normalization [7] is used
in order to normalize the inputs to the nonlinear activation
function. We use Leaky Rectifier Linear Units (LeakyReLU)
[8] as the activation function in the convolutional blocks.
Finally, the output of the activation function is fed to a Max-
imum Pooling layer (Maxpool) with non-overlapping kernels
of 2 × 2 pixels. The Maxpool layer is commonly used to
reduce the dimensionality of the input images. Table I shows
the configuration used in each convolutional block. We use a
total of 5 convolutional blocks in our architecture.

2) Recurrent blocks: Recurrent blocks are formed by bidi-
rectional 1D-LSTM layers, that process the input image
columnwise (see “Columnwise concat” in Figure 2) in left-to-
right and right-to-left order. The output of the two directions
is concatenated depth-wise (see “Depth concat” in Figure 2).
Thus, if D is the number of hidden units in each direction,
the output of the BLSTM block has a depth of 2 ·D channels.
Before each 1D-LSTM layer, Dropout is also applied here
(with probability 0.5). The number of hidden units of all 1D-
LSTM layers is fixed to D = 256. We use a total number of
5 of recurrent blocks.

3) Linear layer: Finally, each column after the recurrent
1D-LSTM blocks must be mapped to an output label. In order
to do so, the depth is transformed from 2 · D to L using
an affine transformation (where L is equal the number of
characters + 1, for the CTC blank symbol). As we did in the
recurrent blocks, Dropout is applied before the Linear layer to
prevent overfitting (also with probability 0.5).

B. Learning

All parameters of the neural network are trained by min-
imizing the CTC loss. We use the RmsProp algorithm [9]
to incrementally update the parameters of the model using
the gradients of the CTC loss on each batch of 16 images.

�����
��������

�������

�����

������

�����

�����

�������������

�����������

�����������

��������

����������

������

����������� ���������������

Fig. 2: Architecture of the neural network presented in this work using bidirectional 1D-LSTM.

We use a fixed learning rate equal to 0.0003. In all the in-
paper experiments. Training is stopped when the character
error rate (CER) on the validation set does not improve after
20 epochs. We increased this maximum to 80 epochs for the
final experiments in Section IV-E.

C. Dynamic data augmentation

We perform adequate random distortions on the input im-
ages, in order to artificially augment the training samples
and reduce overfitting. These distortions include: rotation,
translation, scaling and shearing (all performed as a single
affine transform) and gray-scale erosion and dilation. Each of
these operations is applied dynamically and independently on
each image of the training batch (each with 0.5 probability).
Thus, the exact same image is virtually never observed twice
during training.

The parameters controlling each distortion (e.g. rotation
angle, scaling factor, erosion kernel, etc.) are sampled from
a fixed distribution. Tuning each of them to minimize CER,
for each dataset, would be too time consuming. Instead, we
use the default parameters provided by our toolkit which have
worked considerably well on a variety of scenarios3.

D. Implementation details

Our toolkit was built using the Lua scripting language. It
uses Torch, a well-known deep learning framework. Torch
supports both CPU and GPU devices. We also use existing
implementations of several operations, when available. This
reduced the cost of implementation and debugging. Most no-
tably, we use NVIDIA’s convolution and LSTM4 and Baidu’s
CTC5 implementations. For the comparison with the 2D-
LSTM models, we used RETURNN [10] and the state-of-the-
art architecture used in [4].

IV. EXPERIMENTAL EVALUATION

A. Datasets

We chose two widely used datasets to experimentally val-
idate our work: First, the IAM database (modern English)

3In fact, these parameters were chosen by visually inspecting a few
training lines from IAM and never changed.

4https://developer.nvidia.com/cudnn
5https://github.com/baidu-research/warp-ctc

[11], compiled by the FKI-IAM Research Group. The dataset
is composed of 1 539 scanned text pages, handwritten by
657 different writers and partitioned into writer-independent
training, validation and test partitions of 6 161, 966 and 2 915
lines, respectively. The original line images in the training set
have an average width of 1 751 pixels and an average height
of 124 pixels. There are 79 different characters in the dataset,
including the white-space. In order to build a better LM,
we also used the Brown, Wellington and LOB text corpora
(excluding the text paragraphs present in the IAM test set).

In addition, we used the Rimes dataset (modern French)
[12]. Rimes consists of 11 333 training lines and 778 test lines.
The original release does not include a separated validation
partition, but we sampled 10% of the total training lines for
validation purposes. Thus, the final division of the dataset into
training, validation and test consists of 10 203, 1 130 and 778
lines, respectively. The original line images in the training set
have an average width of 1658 pixels and an average height
of 113 pixels. There are 99 different characters in this dataset.

B. Methods for statistically-sound empirical testing

One of the most popular tools for statistical testing, is the
comparison of the confidence intervals (CI) of the studied
statistic (e.g. the word error rate, CER, etc.). There are several
ways of computing CI, depending on the assumptions that one
makes about the statistic’s distribution. For instance, a usual
assumption is that error rates in lines or paragraphs follow a
normal or a binomial distribution. Unfortunately, they require
assumptions that do not hold in many scenarios, and/or do
not compute a CI over the error rate of the whole partition,
which is the statistic commonly used in the field. Instead,
we compute the CI using non-parametric bootstrapping [13],
which has the advantage that does not make any assumption
about the distribution, and presents an interval over the error
rates at a partition level.

Nonetheless, CI can lead to misinterpretations: it is possible
that two CI are not disjoint and the differences are still
significant. In these cases we compute the p-value over the
differences in the error rates at paragraph-level, using the
standard Student’s t-test6. We followed this approach because

6We also used non-parametric bootstrapping and Wilcoxon signed-rank
tests to compute p-values, with identical significance results.

a) it is well understood and known, b) it is robust with non-
normally distributed data, and c) it is included in all statistical
software packages. Although the error rates are far from being
normally distributed, the differences of the error rates at
paragraph-level are closer to a normal distribution.

Finally, in some cases it is sufficient to show the non-
inferiority of one method. This requires to choose a non-
inferiority margin, ∆. According to [14], a commonly used
strict relative margin is 10%. Instead, we used an even stricter
relative margin of 5%, meaning that the null hypothesis
assumes that our method performs at least 5% worse than
the 2D-LSTM.

Thus, the null and alternative hypotheses in our tests are:{
H0 : e1 = e2

Ha : e1 6= e2

{
H0 : e1 − e2 ≥ ∆

Ha : e1 − e2 < ∆

Superiority test Non-inferiority test

Here, e1 is the (character or word) error rate achieved by
our 1D-LSTM architecture, e2 is the achieved by the 2D
alternative, and ∆ = 0.05e2.

C. Comparison with state-of-the-art 2D-LSTM architecture

Notice that comparing 1D-LSTM against 2D-LSTM archi-
tectures is not a trivial task, for many reasons. We did our best
to fairly compare both architectures, trying to isolate the effect
of other variables. The following aspects were considered:

• We did not use batch normalization nor random distor-
tions in our architecture, for a fair comparison.

• We resized the images only for the 1D architecture. Since
the height that we use (128 pixels) is slightly larger
than the original average height, we are in a slightly
worse average scenario against our architecture in terms
of computing/memory requirements, in comparison to the
2D-LSTM.

• One could argue that the reduction in CER/WER is
because our architecture has many more parameters than
the 2D-LSTM. However, the original authors [4] showed
that the accuracy of the 2D-LSTM model did not benefit
from more parameters. Additionally, the memory used by
the parameters is insignificant compared to the available
GPU memory (40MB vs. 12GB), and most of the space
is actually used to allocate activations and buffers during
back-propagation. Consequently, we do not consider the
number of parameters an important factor, but the accu-
racy and speed achieved, and the memory needed.

• We assume the independence of some factors. In both
cases we use a fixed learning rate of 0.0003 and the
RmsProp algorithm [9]. We also assumed that the effect
of an explicit LM is independent of the architecture, thus
in order to simplify the comparison, we did not use any
explicit LM in this section (i.e. no external n-gram LM).

Table II shows the character and word error rates (without
any external LM) on the training and validation partitions and
the average training runtime per epoch.

TABLE II: Comparison of the state-of-the-art 2D-LSTM archi-
tecture (see [4]) and our proposed model. We show the error
rates on each partition, the average duration of one training
epoch, the maximum amount of GPU memory used, and the
total number of parameters of the architecture. No explicit
language model was used. Bootstrapped confidence intervals
at 95%.

1D-LSTM 2D-LSTM

CER Validation 5.1 [4.6–5.7] 5.7 [5.1–6.3]
Test 8.2 [7.6–8.9] 8.3 [7.7–9.0]

WER Validation 17.9 [16.3–19.7] 20.7 [18.8–22.5]
Test 25.4 [23.9–27.0] 27.5 [26.0–29.0]

Avg. Runtime (min.) 3.8 [3.8–3.8] 24.3 [24.3–24.3]

of parameters (Mi.) 9.3 2.6

Max. Memory (GB) 10.5 10.6

(a) IAM

1D-LSTM 2D-LSTM

CER Validation 3.0 [2.6–3.5] 3.7 [3.1–4.4]
Test 3.3 [2.7–4.1] 4.0 [3.3–4.8]

WER Validation 12.4 [10.9–14.0] 16.5 [14.6–18.6]
Test 12.8 [10.9–14.8] 17.7 [15.4–20.2]

Avg. Runtime (min.) 5.0 [5.0–5.0] 45.9 [45.8–46.0]

of parameters (Mi.) 9.6 2.6

Max. Memory (GB) 10.3 11.5

(b) Rimes

First, observe that the CI over the average running times do
not overlap, being the running times of the 1D-LSTM archi-
tecture much smaller than the 2D-LSTM (6×–7× speedups).
Also, the maximum memory used during training is similar
in both cases. One could argue that the differences in running
times are due to using different interpreted languages (i.e. Lua
vs. Python). However, most of the running time is due to code
executed in the GPU, written in CUDA in both cases.

Although the CI are overlapping in most cases, the WER
p-value is lower than 0.0001 in all partitions and datasets,
under the null hypothesis that both models have the same mean
(see Section IV-B). This is far below the standard α = 0.05,
meaning that we can assume that the architecture based on
1D-LSTM has a significantly lower WER in both datasets. On
the other hand, the CER p-value under H0 : e1 = e2 is also
below α = 0.05, except for the test partition of IAM. However,
the non-inferiority test gives a p-value equal to 0.0013. Thus,
although the superiority of our method cannot be accepted with
a sufficiently low α (i.e. Type-I error), the non-inferiority can.
This scenario (the CER on the test set of IAM) is the only
where our architecture has not been shown to be superior.

D. Effect of dynamic data augmentation and batch normal-
ization

Table III shows the effect of batch normalization and the
data augmentation strategy described in Section III-C. We
did not find any statistically significant difference when using

batch normalization alone, with respect to the 1D-LSTM base-
line. In fact, the results were slightly worse on the validation
partitions. However, batch normalization helps to reduce the
error rates when applied with random distortions on the input
images. On IAM, which has a smaller training set than Rimes,
the error rates are significantly reduced in all cases, when
compared to the baseline. In summary, the CER on the test
set decreases from 8.2% to 6.2% on IAM, and from 3.3% to
2.6% on Rimes. Furthermore, WER is reduced from 25.4% to
20.2% on IAM, and from 12.8% to 10.7% on Rimes.

TABLE III: Effect of using random distortions during training
and batch normalization (BN) on top of the baseline 1D-
LSTM architecture. No explicit language model was used.
Bootstrapped confidence intervals at 95%.

CER (%) WER (%)
System Validation Test Validation Test

Baseline 5.1 8.2 17.9 25.4
[4.6–5.7] [7.6–8.9] [16.3–19.7] [23.9–27.0]

+ BN 5.2 8.3 18.5 24.9
[4.7–5.8] [7.9–8.6] [16.9–20.2] [23.4–26.4]

+ Distortions 4.4 6.4 15.5 20.8
[3.9–4.9] [5.8–6.9] [14.0–17.0] [19.6–22.1]

+ BN + Distortions 4.1 6.2 14.6 20.2
[3.6–4.5] [5.7–6.8] [13.1–16.1] [19.0–21.4]

(a) IAM

CER (%) WER (%)
System Validation Test Validation Test

Baseline 3.0 3.3 12.4 12.8
[2.6–3.5] [2.7–4.1] [10.9–14.0] [10.9–14.7]

+ BN 3.1 3.2 12.6 12.7
[2.6–3.7] [2.5–3.9] [11.0–14.3] [10.9–14.6]

+ Distortions 2.4 2.6 10.8 10.8
[2.0–2.8] [2.1–3.3] [9.3–12.3] [9.0–12.6]

+ BN + Distortions 2.5 2.6 10.5 10.7
[2.1–2.8] [2.0–3.2] [9.3–11.8] [9.0–12.5]

(b) Rimes

E. Comparison with previous publications

In order to fairly compare our contributions with previously
published works that use explicit language models. First, We
transform the label-posteriors output by the neural network,
P (li | xi), into pseudo-likelihoods, according to Eq. (3). Then,
we combine them with an interpolated n-gram model built
using SRILM. Decoding is then performed using Kaldi [15],
with a beam width equal to 65.

p(xi | li) =
P (li | xi) · p(xi)

P (li)
≈ P (li | xi)

P (li)γ
(3)

For both IAM and Rimes we used γ = 0.2. In addition, we
scale the likelihoods p(xi | li) in order to combine them with
the LM scores. The acoustic scale factor for Rimes was set
to 1.90, combined with a 4-gram word LM. For IAM, it was
set to 1.79, for a 3-gram word LM. These parameters were
adjusted to minimize the WER on the validation set.

We used word n-grams for both datasets, with modified
Kneser-Ney discounting [16] and interpolation. For IAM we
used 3-grams and a vocabulary of 50 000 tokens, which
achieved a perplexity of 272.2 and 304.0, and an out-of-
vocabulary (OOV) rate of 3.0% and 2.9%, on the validation
and test sets, respectively. For Rimes, 4-grams were used with
the whole training vocabulary (5 048 tokens) achieving a much
lower perplexity, 21.9 and 21.1, and OOV rates, 2.9% and
2.8%, on the validation and test sets.

Table IV shows the results of the comparison between our
system and previously published results. Notice that the use
of an explicit LM reduced the error rates dramatically for
IAM, but not much for Rimes. In the latter scenario, our
system has a lower CER when compared to the previous
best publication, even without using an explicit LM (2.3%
vs. 2.8%), and the WER with no LM is similar to the state-
of-the-art (9.6% in both cases). When the 4-gram LM is used,
the WER decreases to 9.0%. However, notice a small increase
in the CER (from 2.3% to 2.5%). These differences are very
likely not significant, but previous publications did not offer
data to make this comparison. The achieved CER and WER on
IAM are considerably larger than the current state-of-the-art.
However, our system performed better when the LM was not
considered (recall that both architectures were compared under
same conditions in Section IV-C). Hence, these differences are
very likely due to the distinct LM. In both [4], [17], they use
a combination of word and character n-grams, in order to
reduce the effect of OOV words. However, we used just a
word n-gram LM aiming to keep the experiments simple.

TABLE IV: Comparison of the character and word error rate
(%) on IAM and Rimes paragraphs achieved in this work
with previously published competitive state-of-the-art results.
Bootstrapped confidence intervals at 95%.

CER (%) WER (%)
System Validation Test Validation Test

Ours (no LM) 3.8 5.8 13.5 18.4
[3.4–4.3] [5.3–6.3] [12.1–14.9] [17.4–19.5]

Ours (word LM) 2.9 4.4 9.2 12.2
[2.5–3.3] [3.9–4.8] [8.1–10.2] [11.4–13.2]

Voigtlaender et al. [4] 2.4 3.5 7.1 9.3
Doetsch et al. [17] 2.5 4.7 8.4 12.2
Pham et al. [3] 3.7 5.1 11.2 13.6

(a) IAM

CER (%) WER (%)
System Validation Test Validation Test

Ours (no LM) 2.2 2.3 9.6 9.6
[1.8–2.5] [1.8–3.0] [8.3–11.0] [8.1–11.3]

Ours (word LM) 2.3 2.5 8.9 9.0
[2.0–2.7] [1.9–3.2] [7.9–10.0] [7.5–10.4]

Voigtlaender et al. [4] — 2.8 — 9.6
Doetsch et al. [17] — 4.3 — 12.9
Pham et al. [3] 3.3† 3.3 13.1† 12.3

(b) Rimes

V. DISCUSSION AND RELATED WORKS

Convolutional layers and 1D recurrent layers have already
been used in the past for HTR. For instance, in [18] they
combined ConvNets with HMMs, using an hybrid architecture
instead of using CTC for training the system end to end. In
addition, 1D-LSTM and CTC have also been used on top of
handcrafted features [17]. The most similar published work to
ours is [19], where they use a similar architecture and train
with CTC. However, they only applied it for isolated word
recognition.

In this work, we provided multiple evidences that multidi-
mensional recurrent layers may not be necessary to achieve
good accuracy for HTR. We provided some intuitive expla-
nation: although MDLSTM are in principle more powerful
than ConvNets, this additional power seems not be necessary
for HTR, given that similar features are learned. Moreover,
a statistically-sound analysis of the experimental results also
supports this claim, for two widely used datasets.

Nevertheless, a word of caution is required: Notice that
the databases that we used are just a (very small) subset of
all possible scenarios for HTR. Also, the system architecture
might not be independent with other factors (e.g. LM), but
we assumed it for practical purposes. Thus, many more
experiments need to be conducted to strengthen the statistical
power of our conclusions. Anyhow, the experimental results
support the intuitive explanation, and are very positive due to
the huge reduction in computational cost.

Finally, we would like to encourage future publications to
make use of the (or a similar) statistical analysis that we
conducted. We are aware that statistical testing is not free
of controversy: p-hacking and publication bias are just two
examples. However, it is the most effective way (if properly
used) of knowing whether some observations are due to a
fundamental difference between two approaches, or just due
to the particularities of the data.

ACKNOWLEDGMENT

I am in debt with Paul Voigtlaender and Patrick Doetsch,
who generously gave additional details from their work. I
would also like to thank my supervisors, Enrique Vidal
and Alejandro H. Toselli, and my long-time labmate Dani
Martín-Albo, for their comments on this article. NVIDIA
Corporation kindly donated the Titan X GPU used for this
research. Finally, this work was partially supported by the
Spanish MEC under grant FPU13/06281, and through the
EU projects: HIMANIS (JPICH program, Spanish grant Ref.
PCIN-2015-068) and READ (Horizon-2020 program, grant
Ref. 674943).

REFERENCES

[1] A. Graves and J. Schmidhuber, “Offline Handwriting Recognition with
Multidimensional Recurrent Neural Networks,” in Advances in Neural
Information Processing Systems 21, D. Koller, D. Schuurmans, Y. Ben-
gio, and L. Bottou, Eds. Curran Associates, Inc., 2009, pp. 545–552.

†Rimes does not have a predefined validation set, so the validation sets
are likely to be different.

[2] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[3] V. Pham, T. Bluche, C. Kermorvant, and J. Louradour, “Dropout
Improves Recurrent Neural Networks for Handwriting Recognition,”
in 2014 14th International Conference on Frontiers in Handwriting
Recognition, Sept 2014, pp. 285–290.

[4] P. Voigtlaender, P. Doetsch, and H. Ney, “Handwriting Recognition
with Large Multidimensional Long Short- Term Memory Recurrent
Neural Networks,” in 2016 15th International Conference on Frontiers
in Handwriting Recognition (ICFHR), Oct 2016, pp. 228–233.

[5] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: Labelling unsegmented sequence data with
recurrent neural networks,” in Proceedings of the 23rd International
Conference on Machine Learning, ser. ICML ’06. New York, NY,
USA: ACM, 2006, pp. 369–376.

[6] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting,” Journal of Machine Learning Research, vol. 15, pp. 1929–
1958, 2014.

[7] Sergey Ioffe and Christian Szegedy, “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift,” CoRR,
vol. abs/1502.03167, 2015. [Online]. Available: http://arxiv.org/abs/
1502.03167

[8] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. ICML, vol. 30, no. 1,
2013.

[9] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural
networks for machine learning, vol. 4, no. 2, 2012.

[10] P. Doetsch, A. Zeyer, P. Voigtlaender, I. Kulikov, R. Schlüter, and H. Ney,
“RETURNN: the RWTH extensible training framework for universal
recurrent neural networks,” CoRR, vol. abs/1608.00895, 2016.

[11] U.-V. Marti and H. Bunke, “The IAM-database: an English sentence
database for offline handwriting recognition,” International Journal on
Document Analysis and Recognition, vol. 5, no. 1, pp. 39–46, 2002.

[12] E. Augustin, J.-m. Brodin, M. Carré, E. Geoffrois, E. Grosicki, and
F. Prêteux, “RIMES evaluation campaign for handwritten mail process-
ing,” in Proc. of the Workshop on Frontiers in Handwriting Recognition,
no. 1, 2006.

[13] B. Efron, “Better bootstrap confidence intervals,” Journal of the Amer-
ican Statistical Association, vol. 82, no. 397, pp. 171–185, 1987.

[14] S. Wellek, Testing statistical hypotheses of equivalence and noninferi-
ority. CRC Press, 2010.

[15] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stem-
mer, and K. Vesely, “The Kaldi Speech Recognition Toolkit,” in IEEE
2011 Workshop on Automatic Speech Recognition and Understand-
ing. IEEE Signal Processing Society, Dec. 2011, iEEE Catalog No.:
CFP11SRW-USB.

[16] S. F. Chen and J. Goodman, “An Empirical Study of Smoothing
Techniques for Language Modeling,” in Proceedings of the 34th
Annual Meeting on Association for Computational Linguistics, ser.
ACL ’96. Stroudsburg, PA, USA: Association for Computational
Linguistics, 1996, pp. 310–318. [Online]. Available: http://dx.doi.org/
10.3115/981863.981904

[17] P. Doetsch, M. Kozielski, and H. Ney, “Fast and Robust Training
of Recurrent Neural Networks for Offline Handwriting Recognition,”
in 2014 14th International Conference on Frontiers in Handwriting
Recognition, Sept 2014, pp. 279–284.

[18] T. Bluche, H. Ney, and C. Kermorvant, “Feature extraction with convolu-
tional neural networks for handwritten word recognition,” in Document
Analysis and Recognition (ICDAR), 2013 12th International Conference
on. IEEE, 2013, pp. 285–289.

[19] B. Shi, X. Bai, and C. Yao, “An End-to-End Trainable Neural Network
for Image-based Sequence Recognition and Its Application to Scene
Text Recognition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. PP, no. 99, pp. 1–1, 2016.

